Which shows the correct substitution of the values a, b, and c from the equation 0 = 4x2 + 2x – 1 into the quadratic formula below? Quadratic formula: x = StartFraction negative b plus or minus StartRoot b squared minus 4 a c EndRoot Over 2 a EndFraction x = StartFraction negative 2 plus or minus StartRoot 2 squared minus 4(4)(negative 1) EndRoot Over 2(4) EndFraction x = StartFraction negative 2 plus or minus StartRoot 2 squared minus 4(4)(1) EndRoot Over 2(4) EndFraction x = StartFraction negative 2 plus or minus StartRoot 2 squared + 4(4)(negative 1) EndRoot Over 2(4) EndFraction x = StartFraction negative 2 plus or minus StartRoot negative 2 squared minus 4(4)(negative 1) EndRoot Over 2(4) EndFraction

Respuesta :

Louli

Answer:

[tex]x = \frac{-2 +/- \sqrt{((2)^{2}-4(4)(-1)} }{2(4)}[/tex]

Explanation:

1- getting the values of a,b and c:

The general form of the quadratic equation is:

ax² + bx + c = 0

The given equation is:

4x² + 2x - 1 = 0

By comparing, we can note that:

a = 4, b = 2 and c = -1

2- Setting the quadratic formula:

To get the roots of a quadratic equation, the following equation is usually used:

[tex]x = \frac{-b +/- \sqrt{(b^{2}-4ac)} }{2a}[/tex]

Substituting with the values from part 1, we get:

[tex]x = \frac{-2 +/- \sqrt{((2)^{2}-4(4)(-1)} }{2(4)}[/tex]

Hope this helps :)

To get the roots of a quadratic equation, the following equation is usually used:

x = \frac{-b +/- \sqrt{(b^{2}-4ac)} }{2a}

Substituting with the values from part 1, we get:

x = \frac{-2 +/- \sqrt{((2)^{2}-4(4)(-1)} }{2(4)}