Answer:
5 cats, 1 fish and 94 birds
Step-by-step explanation:
Let
A kid bought 100 toy animals, then
[tex]c+b+f=100[/tex]
If a cat costs $10.00, then c cats cost $10c.
If a fish costs $3.00, then f fish cost $3f.
If a bird costs $0.50, then b birds cost $0.5b.
In total,
[tex]10c+3f+0.5b=100[/tex]
We get the system of two equations:
[tex]\left\{\begin{array}{l}c+b+f=100\\10c+3f+0.5b=100\end{array}\right.[/tex]
From the first equation:
[tex]b=100-c-f[/tex]
Substitute it into the second equation:
[tex]10c+3f+0.5(100-c-f)=100\\ \\10c+3f+50-0.5c-0.5f=100\\ \\9.5c+2.5f=50\\ \\95c+25f=500\\ \\19c+5f=100\\ \\f=20-\dfrac{19}{5}c[/tex]
Number f must be a whole number greater than 0, so
[tex]20-\dfrac{19}{5}c>0\\ \\c<\dfrac{100}{19}\\ \\c\le 5\dfrac{5}{19}[/tex]
Number c must be a multiple of 5, thus the only possible value for c is 5.
When c = 5, then
[tex]f=20-5\cdot \dfrac{19}{5}=20-19=1\\ \\b=100-5-1=94[/tex]