Answer:
Vx = 6 m / s  and .vy = 7 m / s
Explanation:
a) Let's substitute the value of time in the equations
  x (1) = a +6
  y (1) = b + 7
b) and e) We calculate the position for t = 2 s
   x (2) = a +12
   y (2) = b +14
We calculate the average speed
   v = (x (2) -x (1)) / t2- t1
   vₓ = ((a + 12) - (a-6)) / (2-1)
   vₓ = 6 m / s
   [tex]v_{y}[/tex] = ((b + 14) - (b-7)) / 1
   [tex]v_{y}[/tex] = 7 m / s
c) and f) The instantaneous bone change calculates with the derivative
  vₓ = dx / dt
  vₓ = 6 m / s
That is constant for all time
  [tex]v_{y}[/tex] = dy / dt
  [tex]v_{y}[/tex] = 7 m / s
d) The speed on the x-axis is constant and is worth vx = 6 m / s