Respuesta :

Answer:

See explanation

Step-by-step explanation:

The given expression is: [tex](24)^{\frac{1}{3}}[/tex]

Recall that 24=3*8

[tex]\implies(24)^{\frac{1}{3}}=(8*3)^{\frac{1}{3}}[/tex]

Recall again that:

[tex](a*b)^n=a^n*b^n[/tex]

[tex]\implies (8*3)^{\frac{1}{3}}=(8)^{\frac{1}{3}}*(3)^{\frac{1}{3}}[/tex]

[tex]\implies (8*3)^{\frac{1}{3}}=(2^3)^{\frac{1}{3}}*(3)^{\frac{1}{3}}[/tex]

[tex]\implies (8*3)^{\frac{1}{3}}=2^{3*\frac{1}{3}}*(3)^{\frac{1}{3}}[/tex]

[tex]\implies (8*3)^{\frac{1}{3}}=2*(3)^{\frac{1}{3}}[/tex]

We rewrite in radical form to obtain

[tex]\implies (8*3)^{\frac{1}{3}}=2\sqrt[3]{3}[/tex]

Answer:

[tex]24^{1/3}[/tex] = [tex]\sqrt[3]{24}[/tex] or [tex]2\sqrt[3]{3}[/tex]

Step-by-step explanation:

We will apply one of the laws of indices which states

[tex]a^{b/c}[/tex] = [tex]\sqrt[c]({a})^b[/tex]

So from the question given, 24 superscript one-third = [tex]24^{1/3}[/tex]

by comparison,  a= 24, b = 1, and c = 3

Applying the law I stated above

[tex]a^{b/c}[/tex] = [tex]\sqrt[c]({a})^b[/tex]

[tex]a^{b/c}[/tex] = [tex]24^{1/3}[/tex] = [tex]\sqrt[3]({24})^{1}[/tex]

[tex]a^{b/c}[/tex] = [tex]\sqrt[3]({8 X 3})^{1}[/tex]  

[tex]a^{b/c}[/tex] = [tex]\sqrt[3]({8})^{1}[/tex] × [tex]\sqrt[3]({3})^{1}[/tex]

[tex]a^{b/c}[/tex] = 2 × [tex]\sqrt[3]({3})^{1}[/tex]

[tex]2\sqrt[3]{3}[/tex] (superscript 1 is removed because any value raised to the power of one is equal to that value) or [tex]\sqrt[3]{24}[/tex]

Therefore the expression will be  [tex]2\sqrt[3]{3}[/tex] or [tex]\sqrt[3]{24}[/tex] ---- Answer