Which are the solutions of x2 = –11x + 4? StartFraction negative 11 minus StartRoot 137 EndRoot Over 2 EndFraction comma StartFraction negative 11 + StartRoot 137 EndRoot Over 2 EndFraction StartFraction negative 11 minus StartRoot 125 EndRoot Over 2 EndFraction comma StartFraction negative 11 + StartRoot 125 EndRoot Over 2 EndFraction StartFraction 11 minus StartRoot 137 EndRoot Over 2 EndFraction comma StartFraction 11 + StartRoot 137 EndRoot Over 2 EndFraction StartFraction 11 minus StartRoot 125 EndRoot Over 2 EndFraction comma StartFraction 11 + StartRoot 125 EndRoot Over 2 EndFraction

Respuesta :

Answer:

[tex]x_1=-\frac{11}{2}-\frac{\sqrt{137} }{2}\\\\x_2=-\frac{11}{2}+\frac{\sqrt{137} }{2}[/tex]

Step-by-step explanation:

Given the following quadratic equation:

[tex]x^2 = -11x + 4[/tex]

The steps to solve it are:

1. Move the terms to one side of the equation:

[tex]x^2+11x- 4=0[/tex]

2. Apply the Quadratic formula [tex]x=\frac{-b\±\sqrt{b^2-4ac} }{2a}[/tex].

In this case we can identify that:

[tex]a=1\\b=11\\c=-4[/tex]

Then, substituting these values into the Quadratic formula we get the following solutions:

[tex]x=\frac{-11\±\sqrt{11^2-4(1)(-4)} }{2(1)}[/tex]

[tex]x_1=-\frac{11}{2}-\frac{\sqrt{137} }{2}\\\\x_2=-\frac{11}{2}+\frac{\sqrt{137} }{2}[/tex]

Answer:

b

Step-by-step explanation:

StartFraction negative 11 minus StartRoot 125 EndRoot Over 2 EndFraction comma StartFraction negative 11 + StartRoot 125 EndRoot Over 2 EndFraction