Respuesta :
Answer:
Option B.
Step-by-step explanation:
The given matrices are
[tex]G=\begin{bmatrix}7&5\\ \:4&3\end{bmatrix}[/tex]
[tex]H=\begin{bmatrix}-6&-5\\ \:-4&-2\end{bmatrix}[/tex]
Two matrices are inverse of each other if product of both matrices is identity matrix, i.e., [tex]I=\begin{bmatrix}1&0\\ \:0&1\end{bmatrix}[/tex].
[tex]\begin{bmatrix}7&5\\ \:4&3\end{bmatrix}\begin{bmatrix}-6&-5\\ \:-4&-2\end{bmatrix}[/tex]
[tex]\begin{bmatrix}7\left(-6\right)+5\left(-4\right)&7\left(-5\right)+5\left(-2\right)\\ 4\left(-6\right)+3\left(-4\right)&4\left(-5\right)+3\left(-2\right)\end{bmatrix}[/tex]
[tex]\begin{bmatrix}-62&-45\\ -36&-26\end{bmatrix}\neq I[/tex]
Matrices G and H are not inverses of each other because GH does not equal I.
Therefore, the correct option is B.
Answer:
B. Matrices G and H are not inverses of each other because GH not equal to I.
Step-by-step explanation: