Respuesta :

Answer:

x=-6

Step-by-step explanation:

we know that

If two lines are parallel, then their slopes are the same

In this problem

slope CD=slope EF

The formula to calculate the slope between two points is equal to

[tex]m=\frac{y2-y1}{x2-x1}[/tex]

step 1

Find the slope EF

we have

E(-6,14) and F(-2,4)

substitute the values in the formula

[tex]m_E_F=\frac{4-14}{-2+6}\\m_E_F=\frac{-10}{4}\\m_E_F=-2.5[/tex]

step 2

Find the slope CD

we have

C(x, 16) and D(2, -4)

substitute the values in the formula

[tex]m_C_D=\frac{-4-16}{2-x}\\m_C_D=\frac{-20}{2-x}[/tex]

Remember that

[tex]m_C_D=m_E_F[/tex]

so

[tex]\frac{-20}{2-x}=-2.5[/tex]

[tex]-20=-5+2.5x\\2.5x=-20+5\\2.5x=-15\\x=-6[/tex]

Parallel lines have the same slope

The value of x is -6

The coordinates of the points are:

[tex]\mathbf{C = (x,16)}[/tex]

[tex]\mathbf{D = (2,-4)}[/tex]

[tex]\mathbf{E = (-6,14)}[/tex]

[tex]\mathbf{F = (-2,4)}[/tex]

Calculate the slope of CD using:

[tex]\mathbf{m = \frac{y_2 - y_2}{x_2 - x_1}}[/tex]

So, we have:

[tex]\mathbf{CD = \frac{-4 - 16}{2 - x}}[/tex]

[tex]\mathbf{CD = \frac{-20}{2 - x}}[/tex]

Calculate the slope of EF using the same slope formula

[tex]\mathbf{EF = \frac{4 - 14}{-2 - -6}}[/tex]

[tex]\mathbf{EF = \frac{- 10}{4}}[/tex]

Because both lines are parallel, then:

[tex]\mathbf{CD = EF}[/tex]

So, we have:

[tex]\mathbf{\frac{-20}{2 - x} = \frac{- 10}{4}}[/tex]

Divide both sides by -10

[tex]\mathbf{\frac{2}{2 - x} = \frac{1}{4}}[/tex]

Cross multiply

[tex]\mathbf{2-x = 8}[/tex]

Solve for x

[tex]\mathbf{x = 2 - 8}[/tex]

[tex]\mathbf{x = - 6}[/tex]

Hence, the value of x is -6

Read more about slopes of parallel lines at:

https://brainly.com/question/12203383