Respuesta :

The binomial expansion of (m+2)^4 using the pascal triangle is [tex](m+2)^4=m^4+8m^3+24m^2+32m+16[/tex]

Given the expression (m+2)⁴

According to the binomial expansion, the power of m will be decreasing while the power of 2 will be increasing as shown:

[tex](m+2)^4 = m^42^0+m^32^1+m^22^2+m2^3+m^02^4\\ (m+2)^4=m^4+2m^3+4m^2+8m+16[/tex]

Using the coefficient 1, 4, 6, 4, 1 according to  the pascal triangle, we will have:

[tex](m+2)^4=1m^4+4(2m^3)+6(4m^2)+4(8m)+1(16)\\(m+2)^4=m^4+8m^3+24m^2+32m+16[/tex]

Hence the binomial expansion of (m+2)^4 using the pascal triangle is [tex](m+2)^4=m^4+8m^3+24m^2+32m+16[/tex]

Learn more hee: https://brainly.com/question/24102756