Respuesta :
Answer:
a) P(A|B)=0.108
b) [tex]P(A^c|B^c)[/tex]=0.999
Step-by-step explanation:
Given the events:
A: the person is infected
B: the person tests positive
[tex]A^c[/tex]: the person is not infected
[tex]B^c[/tex]: the person tests negative
a) If we check the attached picture, we can see that:
[tex]P(A)=\frac{1}{150}[/tex]
[tex]P(A^c)=\frac{149}{150}[/tex]
P(B|A)=[tex]\frac{90}{100}[/tex]
[tex]P(B|A^c)=\frac{5}{100}[/tex]
Bayes' Theorem:
P(B)= P(B∩A) + P(B∩[tex]A^c[/tex])
P(B)= P(B|A)×P(A) + P(B|[tex]A^c[/tex])×P([tex]A^c[/tex])
P(B)=[tex]\frac{90}{100} \frac{1}{150} +\frac{5}{100} \frac{149}{150}=\frac{167}{3000}[/tex]
We have to find the probability that the person is infected given that a person tests positive.
P(A|B)=[tex]\frac{P(B|A)P(A)}{P(B)}[/tex]=[tex]\frac{\frac{90}{100}.\frac{1}{150} }{\frac{167}{3000} }=\frac{18}{167}=0.108[/tex]
b) We have to find the probability that the person is not infected given that a person tests negative:
[tex]P(A^c|B^c)=\frac{P(B^c|A^c)P(A^c)}{P(B^c)}=\frac{P(B^c|A^c)P(A^c)}{1-P(B)}[/tex]
=[tex]\frac{\frac{95}{100} . \frac{149}{150} }{1-\frac{167}{3000}}=\frac{2831}{2833}=0.999[/tex]
