Answer:
D
Step-by-step explanation:
Given: [tex]z=3-3i[/tex]
Find: [tex]z^3=(3-3i)^3[/tex]
Solution:
Use the formula
[tex](a-b)^3=a^3-3a^2b+3ab^2-b^3[/tex]
Hence,
[tex](3-3i)^3\\ \\=3^3-3\cdot 3^2\cdot(3i)+3\cdot 3\cdot (3i)^2-(3i)^3\\ \\=27-81i+9\cdot 9i^2-3^3i^3\\ \\=27-81i+81i^2-27i^3[/tex]
Now remind that
[tex]i^2=-1,[/tex]
then
[tex]i^3=i^2\cdot i=-1\cdot i=-i[/tex]
Substitute:
[tex](3-3i)^3\\ \\=27-81i+81\cdot (-1)-27\cdot (-i)\\ \\=27-81i-81+27i\\ \\=27-81-81i+27i\\ \\=-54-54i[/tex]