The wall of drying oven is constructed by sandwiching insulation material of thermal conductivity k = 0.05 W/m°K between thin metal sheets. The oven air is at T[infinity],????= 300℃, and the corresponding convection coefficient is ℎ???? = 30 W/ m2 °K. The inner wall absorbs a radiant flux of ????′′????????????= 100 W/ m2 from hotter objects within the oven. The room air at T[infinity],o= 25℃, and overall coefficient for convection and radiation from the outer surface is ℎo = 10 W/ m2 °K. What insulation thickness L is required to maintain the outer wall surface at a safe-to-touch temperature of To = 40 degree C?

Respuesta :

Answer:

86 mm

Explanation:

From the attached thermal circuit diagram, equation for i-nodes will be

[tex]\frac {T_ \infty, i-T_{i}}{ R^{"}_{cv, i}} + \frac {T_{o}-T_{i}}{ R^{"}_{cd}} + q_{rad} = 0[/tex] Equation 1

Similarly, the equation for outer node “o” will be

[tex]\frac {T_{ i}-T_{o}}{ R^{"}_{cd}} + \frac {T_{\infty, o} -T_{o}}{ R^{"}_{cv, o}} = 0[/tex] Equation 2

The conventive thermal resistance in i-node will be

[tex]R^{"}_{cv, i}= \frac {1}{h_{i}}= \frac {1}{30}= 0.033 m^{2}K/w[/tex] Equation 3

The conventive hermal resistance per unit area is

[tex]R^{"}_{cv, o}= \frac {1}{h_{o}}= \frac {1}{10}= 0.100 m^{2}K/w[/tex] Equation 4

The conductive thermal resistance per unit area is

[tex]R^{"}_{cd}= \frac {L}{K}= \frac {L}{0.05} m^{2}K/w[/tex] Equation 5

Since [tex]q_{rad}[/tex]  is given as 100, [tex]T_{o}[/tex]  is 40 [tex]T_ \infty[/tex]  is 300 [tex]T_{\infty, o}[/tex]  is 25  

Substituting the values in equations 3,4 and 5 into equations 1 and 2 we obtain

[tex]\frac {300-T_{i}}{0.033} +\frac {40-T_{i}}{L/0.05} +100=0[/tex]  Equation 6

[tex]\frac {T_{ i}-40}{L/0.05}+ \frac {25-40}{0.100}=0[/tex]

[tex]T_{i}-40= \frac {L}{0.05}*150[/tex]

[tex]T_{i}-40=3000L[/tex]

[tex]T_{i}=3000L+40[/tex] Equation 7

From equation 6 we can substitute wherever there’s [tex]T_{i}[/tex] with 3000L+40 as seen in equation 7 hence we obtain

[tex]\frac {300- (3000L+40)}{0.033} + \frac {40- (3000L+40)}{L/0.05}+100=0[/tex]

The above can be simplified to be

[tex]\frac {260-3000L}{0.033}+ \frac {(-3000L)}{L/0.05}+100=0[/tex]

[tex]\frac {260-3000L}{0.033}=50[/tex]

-3000L=1.665-260

[tex]L= \frac {-258.33}{-3000}=0.086*10^{-3}m= 86mm[/tex]

Therefore, insulation thickness is 86mm

Ver imagen opudodennis