Respuesta :
Answer : The heat capacity of the bomb calorimeter [tex]15.633kJ/^oC[/tex]
Explanation :
First we have to calculate the heat released by the combustion.
[tex]q=n\times \Delta H[/tex]
where,
q = heat released by combustion = ?
n = moles of benzoic acid = [tex]\frac{\text{Mass of benzoic acid}}{\text{Molar mass of benzoic acid}}=\frac{2.8161g}{122.122g/mole}=0.02306mole[/tex]
[tex]\Delta H[/tex] = enthalpy of combustion = 3226.7 kJ/mole
Now put all the given values in the above formula, get:
[tex]q=(0.02306mole)\times (3226.7kJ/mole)=74.407kJ[/tex]
Now we have to calculate the heat capacity of the bomb calorimeter.
Heat released by the reaction = Heat absorbed by the calorimeter + Heat absorbed by the water
[tex]q=[q_1+q_2][/tex]
[tex]q=[c_1\times \Delta T+m_2\times c_2\times \Delta T][/tex]
where,
q = heat released by the reaction  = 74.4077 kJ = 74407.7 J
[tex]q_1[/tex] = heat absorbed by the calorimeter
[tex]q_2[/tex] = heat absorbed by the water
[tex]c_1[/tex] = specific heat of calorimeter = ?
[tex]c_2[/tex] = specific heat of water = [tex]4.18J/g^oC[/tex]
[tex]m_2[/tex] = mass of water = 2550 g
[tex]\Delta T[/tex] = change in temperature = [tex]T_2-T_1=24.67-21.84=2.83^oC[/tex]
Now put all the given values in the above formula, we get:
[tex]74407J=[(c_1\times 2.83^oC)+(2550g\times 4.18J/g^oC\times 2.83^oC)][/tex]
[tex]c_1=15633.226J/^oC=15.633kJ/^oC[/tex]
Therefore, the heat capacity of the bomb calorimeter [tex]15.633kJ/^oC[/tex]