Respuesta :
Answer : The heat capacity of the bomb calorimeter [tex]7.865kJ/^oC[/tex]
Explanation :
First we have to calculate the heat released by the combustion.
[tex]q=n\times \Delta H[/tex]
where,
q = heat released by combustion = ?
n = moles of benzoic acid = [tex]\frac{\text{Mass of benzoic acid}}{\text{Molar mass of benzoic acid}}=\frac{1.09g}{122.122g/mole}=0.00893mole[/tex]
[tex]\Delta H[/tex] = enthalpy of combustion = 3227 kJ/mole
Now put all the given values in the above formula, get:
[tex]q=(0.00893mole)\times (3227kJ/mole)=28.8kJ[/tex]
Now we have to calculate the heat capacity of the bomb calorimeter.
Heat released by the reaction = Heat absorbed by the calorimeter
[tex]q=c\times \Delta T[/tex]
where,
q = heat released by the reaction  = 28.8 kJ = 28800 J
[tex]c[/tex] = heat capacity of calorimeter = ?
[tex]\Delta T[/tex] = change in temperature = [tex]3.662^oC[/tex]
Now put all the given values in the above formula, we get:
[tex]28800J=(c\times 3.662^oC)[/tex]
[tex]c=7864.55J/^oC=7.865kJ/^oC[/tex]
Therefore, the heat capacity of the bomb calorimeter [tex]7.865kJ/^oC[/tex]