Judy is playing a card game. She needs to select two cards below that have a sum greater
than 5. Which two cards should she select? Prove it.
[tex]2 \frac{2}{5} [/tex]

[tex]2 \frac{2}{7} [/tex]

[tex]1 \frac{7}{8} [/tex]

[tex]2 \frac{1}{10} [/tex]

[tex]2 \frac{5}{8} [/tex]

Respuesta :

2 2/5 = 2.4
2 2/7 = 2.28
1 7/8 = 1.875
2 1/10 = 2.1
2 5/8 = 2.625

Answer 2 2/5 (2.4) + 2 5/8 (2.625) = 5.025

Answer:

The two cards she should select are:

a) [tex]2\frac{2}{5}[/tex]

e) [tex]2\frac{5}{8}[/tex]

Explanation

A mixed number is an addition of its whole and fractional parts.

a)

[tex]2+\frac{2}{5} \\\\2*\frac{5}{5} +\frac{2}{5} \\\\\frac{2*5}{5} +\frac{2}{5} \\\\\frac{10+2}{5} \\\\\frac{12}{5} = 2.4[/tex]

b)

[tex]2+\frac{2}{7} \\\\2*\frac{7}{7} +\frac{2}{7} \\\\\frac{2*7}{7} +\frac{2}{7} \\\\\frac{14+2}{7} \\\\\frac{16}{7} = 2.28[/tex]

c)

[tex]1+\frac{7}{8} \\\\1*\frac{8}{8} +\frac{7}{8} \\\\\frac{1*8}{8} +\frac{7}{8} \\\\\frac{8+7}{8} \\\\\frac{15}{8} = 1.87[/tex]

d)

[tex]2+\frac{1}{10} \\\\2*\frac{10}{10} +\frac{1}{10} \\\\\frac{2*10}{10} +\frac{1}{10} \\\\\frac{20+1}{10} \\\\\frac{21}{10} = 2.1[/tex]

e)

[tex]2+\frac{5}{8} \\\\2*\frac{8}{8} +\frac{5}{8} \\\\\frac{2*8}{8} +\frac{5}{8} \\\\\frac{16+5}{8} \\\\\frac{21}{8} = 2.62[/tex]

After solving each mixed number we can see that the only two values that add up to +5 are a) 2.4 and e) 2.62

2.4 + 2.62 = 5.02