Judy is playing a card game. She needs to select two cards below that have a sum greater
than 5. Which two cards should she select? Prove it.
[tex]2 \frac{2}{5} [/tex]

[tex]2 \frac{2}{7} [/tex]

[tex]1 \frac{7}{8} [/tex]

[tex]2 \frac{1}{10} [/tex]

[tex]2 \frac{5}{8} [/tex]
​​
(posted again to put this in the right subject)

Respuesta :

Answer:

[tex]2\frac{2}{5}  + 2\frac{5}{8} \simeq 5[/tex]

[tex]2\frac{2}{7}  + 2\frac{5}{8}  \simeq 5[/tex]

Step-by-step explanation:

Mixed fraction [tex]a\frac{b}{c}[/tex] can be converted into like or unlike fractions.

Here, [tex]a\frac{b}{c} =  \frac{ac +b}{b}[/tex]

So, convert all the given fractions as follows:

[tex]2\frac{2}{5} =  \frac{2(5) +2}{5} = \frac{12}{5}  =2.4[/tex]

[tex]2\frac{2}{7} =  \frac{2(7) +2}{7} = \frac{16}{7}  =2.4[/tex]

[tex]1\frac{7}{8} =  \frac{1(8) +7}{8} = \frac{15}{8}  =1.8[/tex]

[tex]2\frac{1}{10} =  \frac{2(10) + 1}{10} = \frac{21}{10}  =2.1[/tex]

[tex]2\frac{5}{8} =  \frac{2(8) +5}{8} = \frac{21}{8}  =2.6[/tex]

Here, No Two fractions on addition gives a sum greater than 5.

But an approximate sum of 5 is given by adding 2.4 + 2.6 = 5

⇒[tex]2\frac{2}{5}  + 2\frac{5}{8} \simeq 5[/tex]

or  ⇒[tex]2\frac{2}{7}  + 2\frac{5}{8}  \simeq 5[/tex]