A 10.0-kg box starts at rest on a level floor. An external, horizontal force of 2.00 × 102 N is applied to the box for a distance of 4.00 m. If the coefficient of kinetic friction between the box and the floor is 0.440, how fast is the block moving at the end of the 4.00 m? Assume it starts from rest.

Respuesta :

Answer:

vf = 11.2 m/s

Explanation:

m = 10 Kg

F = 2*10² N

x = 4.00 m

μ = 0.44

vi = 0 m/s

vf = ?

We can apply Newton's 2nd Law

∑ Fx = m*a   (→)

F - Ffriction = m*a  ⇒  F - (μ*N) = F - (μ*m*g) = m*a   ⇒  a = (F - μ*m*g)/m

⇒    a = (2*10² N - 0.44*10 Kg*9.81 m/s²)/10 Kg = 15.6836 m/s²

then , we use the equation

vf² = vi² + 2*a*x    ⇒    vf = √(vi² + 2*a*x)

⇒   vf = √((0)² + 2*(15.6836 m/s²)*(4.00m)) = 11.2 m/s

Otras preguntas