Answer:
23.62 cm
Step-by-step explanation:
The question asking for a condition when the total area of the square and the circle(A) is minimum/lowest. To find the lowest area you can get, you have to differentiate the formula for the total area(A).
The wire is 77cm long, let's say x is the square side and r is the circle radius. Then it will be
77cm= 4x +   2 *  π  * r Â
4x= 77cm -  2 *  π  * r Â
x= (77cm - Â (Ï€ Â * r ))/4 Â
Square area is x^2 while circle area is  π *r^2. Total area will be:
A= square area + circle area
A==  x^2 + Ï€ *r^2 Â
A=  ( (77 -  (Ï€  r ))/4  ) ^2            +  π *r^2  Â
A=(5929- (144 *  π  r )  + Ï€^2  r^2)/ 16  + Ï€ *r^2  Â
A= 370.56 - 9  π  r  +  π^2  r^2/16  +  π *r^2   Â
A= 370.56 - 28.26  r  +  0.616r^2  +  3.14*r^2  =
A= 370.56 -  28.26  r  +  3.756  r^2    Â
Differentiate the equation to find the lowest point
370.56 -  28.26  r  +  3.756  r^2
- 28.26 Â + Â 7.512 r = 0
r= Â 28.26 Â / 7.512
r = 3.76 cm
Radius of circle when A minimum is 3.76cm, then the perimeter will be: 2 *  π  *3.76=  23.62 cm