A spherical water drop 1.5 μm in diameter is suspended in calm air due to a downward-directed atmospheric electric field of magnitude E = 640 N/C. (a) What is the magnitude of the gravitational force on the drop? (b) How many excess electrons does it have?

Respuesta :

Answer:

(a) [tex]F_{G} = 5.51\times 10^{- 15} N[/tex]

(b) 54 electrons in excess

Solution:

As per the question:

Diameter of the spherical drop, d = [tex]1.5\mu m = 1.5\times 10^{- 6}m[/tex]

Magnitude of the Electric field, E = 640 N/C

Now,

(a) The magnitude of the gravitational force on the spherical drop is given by using Newton's second law:

[tex]F_{G} = mg[/tex]                     (1)

where

m = mass of the sphere

g = acceleration due to gravity

Also,

[tex]m = \rho V[/tex]                           (2)

where

[tex]\rho[/tex] = density of the spherical water drop = [tex]1000 kgm^{- 3}[/tex]

V = volume of the sphere = [tex]\frac{4}{3}\pi (\frac{d}{2})^{3}[/tex]

Now, eqn (2) becomes:

[tex]m = \rho \frac{4}{3}\pi (\frac{d}{2})^{3}[/tex]

Thus eqn (1) will be:

[tex]F_{G} = \rho \frac{4}{3}\pi (\frac{d}{2})^{3}g[/tex]

[tex]F_{G} = 1000\times \frac{4}{3}\pi (\frac{1.5\times 10^{- 6}}{2})^{3}\times 9.8[/tex]

[tex]F_{G} = 5.51\times 10^{- 15} N[/tex]

(b) No. of excess electron:

Now, the spherical drop is suspended in the air, both the electrostatic and gravitational forces on the drop must be equal:

Electrostatic force, [tex]F_{E} = QE = neE[/tex]

where

Q = charge = ne

n = no. of electrons

e = electronic charge

Now,

[tex]F_{G} = F_{E}[/tex]

[tex]5.51\times 10^{- 15} = neE[/tex]

[tex]5.51\times 10^{- 15} = n\times 1.6\times 10^{- 19}\times 640[/tex]

[tex]n = {5.51\times 10^{- 15}}{1.6\times 10^{- 19}\times 640}[/tex]

n = 53.8 ≈ 54 electrons