A curve with polar equation r=508sinθ+41cosθ r=508sin⁡θ+41cos⁡θ represents a line. This line has a Cartesian equation of the form y=mx+by=mx+b ,where mm and bb are constants. Give the formula for yy in terms of xx. For example, if the line had equation y=2x+3y=2x+3 then the answer would be 2∗x+32∗x+3 .

Respuesta :

Answer:

[tex]y=\sqrt{\frac{259745}{4}-(x-\frac{41}{2})^2}+254[/tex]

Step-by-step explanation:

We are given that a curve with polar equation

[tex]r=508sin\theta+41 cos\theta[/tex]

We have to find the equation of curve in Cartesian form.

We know that

[tex]x=rcos\theta[/tex]

[tex]y=rsin\theta[/tex]

[tex]cos\theta=\frac{x}{r}[/tex]

[tex]sin\theta=\frac{y}{r}[/tex]

Squaring both sides and then adding

[tex]x^2+y^2=r^2(cos^2\theta+sin^2\theta)=r^2[/tex]

Because [tex]cos^2\theta+sin^2\theta=1[/tex]

Substitute the values then we get

[tex]r=\frac{508y}{r}+\frac{41x}{r}[/tex]

[tex]r^2=508y+41x[/tex]

[tex]x^2+y^2=508y+41x[/tex]

[tex]x^2-41x+y^2-508y=0[/tex]

To make completing square

[tex](x-\frac{41}{2})^2+(y-254)^2-\frac{1681}{4}-64516=0[/tex]

[tex](x-\frac{41}{2})^2+(y-254)^2+\frac{-1681-258064}{4}=0[/tex]

[tex](x-\frac{41}{2})^2+(y-254)^2-\frac{259745}{4}=0[/tex]

[tex](x-\frac{41}{2})^2+(y-254)^2=\frac{259745}{4}[/tex]

[tex](y-254)^2=\frac{259745}{4}-(x-\frac{41}{2})^2[/tex]

[tex]y-254=\sqrt{\frac{259745}{4}-(x-\frac{41}{2})^2[/tex]

[tex]y=\sqrt{\frac{259745}{4}-(x-\frac{41}{2})^2}+254[/tex]