Answer:
20872108843.53741 Joules
Explanation:
Re = Radius of Earth = 6.37×10⁶ m
M = Mass of the Earth = 5.98 × 10²⁴ kg
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
m = Mass of satellite = 2000 kg
Potential energy
[tex]U_1=G\frac{Mm}{(2Re)}[/tex]
[tex]U_2=G\frac{Mm}{(3Re)}[/tex]
[tex]U_1-U_2=6.67\times \:\:\:10^{-11}\frac{5.98\times \:\:\:10^{24}\times \:\:\:2000}{2\left(6.37\times \:\:\:10^6\right)}-6.67\times \:\:\:\:10^{-11}\frac{5.98\times \:\:\:\:10^{24}\times \:\:\:\:2000}{3\left(6.37\times \:\:\:\:10^6\right)}\\ =20872108843.53741\ Joules[/tex]
Energy required to move the satellite is 20872108843.53741 Joules