Answer:
13.92 %
Explanation:
Mass of [tex]BaSO_4[/tex] = 12.5221 g
Molar mass of [tex]BaSO_4[/tex] = 233.43 g/mol
The formula for the calculation of moles is shown below:
[tex]moles = \frac{Mass\ taken}{Molar\ mass}[/tex]
Thus,
[tex]Moles= \frac{12.5221\ g}{233.43\ g/mol}[/tex]
Moles of [tex]BaSO_4[/tex] = 0.0536 moles
According to the given reaction,
[tex]Ba^{2+}_{(aq)}+SO_4^{2-}_{(aq)}\rightarrow BaSO_4_{(s)}[/tex]
1 mole of [tex]BaSO_4[/tex] is formed from 1 mole of [tex]SO_4^{2-}[/tex]
Thus,
0.0536 moles of [tex]BaSO_4[/tex] is formed from 0.0536 moles of [tex]SO_4^{2-}[/tex]
Moles of [tex]SO_4^{2-}[/tex] = 0.0536 moles
Moles of sulfur in 1 mole [tex]SO_4^{2-}[/tex] = 1 mole
Moles of sulfur in 0.0536 mole [tex]SO_4^{2-}[/tex] = 0.0536 mole
Molar mass of sulfur = 32.065 g/mol
Mass = Moles * Molar mass = 0.0536 * 32.065 g = 1.7187 g
Mass of ore = 12.3430 g
Mass % = [tex]\frac{Mass\ of\ Sulfur}{Mass_{ore}}\times 100[/tex] = [tex]\frac{1.7187}{12.3430}\times 100[/tex] = 13.92 %