Answer:
The total work is 4957.45J
Explanation:
For an ideal gas, at constant temperature the definition of work (W) is
[tex]W = - P.dV = - n.R.T \int\limits^i_f {\frac{dV}{V} \\W = - n.R.T. Ln (\frac{V_{f}}{V_{I}})\\W = - n.R.T. Ln (\frac{P_{i}}{P_{f}})[/tex]
where P is the pressure, V the volume, n the moles number, T the temperature and R the gas constant.
To solve the problem is necessary to replace the two steps in the equation
Stape 1: n  = 1 mol, R = 0.082atm.L/K.mol, T = 77ºC = 350K, Pi = 5.50atm and Pf = 2.43atm.
[tex]W_{1} = - 1molx0.082\frac{atm.L}{K.mol}x350KxLn (\frac{5.50atm}{2.43atm}) = 23.44atm.Lx101.325\frac{J}{atm.L} =2375.44J[/tex]
Stape 2: n  = 1 mol, R = 0.082atm.L/K.mol, T = 77ºC = 350K, Pi = 2.43atm and Pf = 1.00atm.
[tex]W_{2} = - 1molx0.082\frac{atm.L}{K.mol}x350KxLn (\frac{2.43atm}{1.00atm}) = 25.48atm.Lx101.325\frac{J}{atm.L} =2582.01J[/tex]
The total work is the sum of the two steps
[tex]W = W_{1} + W_{2} = 2375.44J + 2582.01J = 4957.45J[/tex]