Answer:
79.2363553 meters per second
Explanation:
Let's use an equation of constant acceleration:
[tex]v^2=v_0^2-2g(x-x_0)\\[/tex]
Where g is the acceleration caused by gravity.
We have [tex]x-x_0=-320 [tex]v^2=(0\frac{m}{s})^2-2(9.81\frac{m}{s^2})(-320m)\\\\v^2=0-(19.62\frac{m}{s^2})(-320 m)\\\\v^2=6278.4 \frac{m^2}{s^2}\\\\v=\sqrt{6278.4 \frac{m^2}{s^2}}\\\\v=79.2363553\frac{m}{s} (approx.)[/tex]m[/tex] and know that [tex]v_0=0\frac{m}{s}[/tex]