Answer: 90% confidence interval: (0.790, 0.848)
Critical t- value for 90% confidence = Â 1.706
Step-by-step explanation:
As we consider the given description, we hvae
n= 27
[tex]\overline{x}=0.819[/tex]
s=0.0881
Since population standard deviation is unknown.
so we use t-critical value
Using t-value table , the critical t- value will be:-
[tex]t_{n-1,\ \alpha/2}=t_{26,\ 0.05}= 1.706[/tex]
Confidence interval : [tex]\overline{x}\pm t_{n-1,\alpha/2}\dfrac{s}{\sqrt{n}}[/tex]
i.e. [tex]0.819\pm ( 1.706)\dfrac{0.0881}{\sqrt{27}}[/tex]
[tex]\approx0.819\pm 0.029=(0.819-0.029,\ 0.819+0.029)\\\\=(0.790,\ 0.848)[/tex]
Hence, 90% confidence interval: (0.790, 0.848)