Answer:
A) 37°
Explanation:
The formula for the critical angle is:
[tex]{sin\theta_{critical}}=\frac {n_r}{n_i}[/tex]
Where,
[tex]{\theta_{critical}}[/tex] is the critical angle
[tex]n_r[/tex] is the refractive index of the refractive medium. = 1.33
[tex]n_i[/tex] is the refractive index of the incident medium. = 1.43
Applying in the formula as:
[tex]{sin\theta_{critical}}=\frac{1.33}{1.43}[/tex]
The critical angle is = sin⁻¹ 0.93006 = 68.4442°
Angle of incidence is half of the critical angle. So,
Angle of incidence = 68.4442° / 2 = 34.2221°
Using Snell's law as:
[tex]n_i\times {sin\theta_i}={n_r}\times{sin\theta_r}[/tex]
Where,
[tex]{\theta_i}[/tex] is the angle of incidence ( 34.2221° )
[tex]{\theta_r}[/tex] is the angle of refraction ( ? )
[tex]{n_r}[/tex] is the refractive index of the refraction medium (water, n=1.33)
[tex]{n_i}[/tex] is the refractive index of the incidence medium (glass, n=1.43)
Hence,
[tex]1.43\times {sin34.2221^0}={1.33}\times{sin\theta_r}[/tex]
Angle of refraction= sin⁻¹ 0.6047 = 37°.