Answer:
Part a)
[tex]a = 3.81 m/s^2[/tex]
Part b)
[tex]T = 27.2 N[/tex]
Part c)
[tex]v_f = 9.53 m/s[/tex]
Explanation:
For m2 mass along the inclined plane we can write
[tex]m_2g sin\theta - T = m_2 a[/tex]
for m1 mass we can write equation in vertical direction
[tex]T - m_1 g = m_1 a[/tex]
so we will have
[tex]m_2g sin\theta - m_1g = (m_1 + m_2) a[/tex]
so we have
[tex]a = \frac{(m_2 sin\theta - m_1)g}{m_1 + m_2}[/tex]
now plug in all data in it
[tex]a = \frac{(7.35 sin50 - 2)9.81}{7.35 + 2}[/tex]
[tex]a = 3.81 m/s^2[/tex]
Part b)
from above equation
[tex]T = m_1g + m_1 a[/tex]
[tex]T = 2(9.81 + 3.81)[/tex]
[tex]T = 27.2 N[/tex]
Part c)
Speed of the object after t = 2.50 s
[tex]v_f = v_i + at[/tex]
[tex]v_f = 0 + 3.81(2.50)[/tex]
[tex]v_f = 9.53 m/s[/tex]