Answer: a) [tex]p=480.03x^2+1[/tex], b) [tex]R'(x)=1440.09x^2+1[/tex] c) $5761.36.
Step-by-step explanation:
Since we have given that
Unit price is expressed as
[tex]p=480.03x^2+1[/tex]
Let x be the number of units of a thousands.
So, Revenue function is given by
[tex]R(x)=px\\\\R(x)=x(480.03x^2+1)\\\\R(x)=480.03x^3+x[/tex]
.(b) Find the marginal revenue function R'..
Marginal revenue function becomes,
[tex]R'(x)=3\times 480.03x^2+1\\\\R'(x)=1440.09x^2+1[/tex]
(c) Compute R'(2).
[tex]R'(2)=1440.09(2)^2+1\\\\R'(2)=5760.36+1\\\\R'(2)=5761.36[/tex]
Hence, a) [tex]p=480.03x^2+1[/tex], b) [tex]R'(x)=1440.09x^2+1[/tex] c) $5761.36.