Answer:
P (average within 10) = 0.9984
Step-by-step explanation:
Given:
Number of consecutive shoppers observed, n = 40
Standard deviation, σ = $21.51
[tex]\bar{x} - \mu = 10[/tex]
Now,
Standard error (SE) = [tex]\frac{\sigma}{\sqrt{n}}[/tex]
or
Standard error (SE) = [tex]\frac{21.51}{\sqrt{40}}[/tex]
or
Standard error (SE) = 3.40
also,
z = [tex]\frac{\bar{x} - \mu}{SE}[/tex]
on substituting the values, we have
z = [tex]\frac{10}{3.40}[/tex]
or
z = 2.94
Now, from the Table of Area Under Standard Noral Curve
for z = 2.94 ; area = 0.9984
we have P (average within 10) = 0.9984