Answer:
[tex]Q(t) = 0.18\times 10^{-6} cos(5\times 10^3 t)[/tex]
Explanation:
We knwo that Kirchoff law
[tex]L\frac{DI(t)}{dt} + \frac{1}{C}Q = 0[/tex]
where
[tex]I(t) = \frac{dQ}{dt}[/tex]
hence
[tex]LQ" + \frac{Q}{C} = 0[/tex]
C is given as 0.04\times 10^{6} F
L= 1 H , so we have
[tex]Q" + Â 25\times 10^6Q = 0[/tex]
the characteristic equation of this differential equation is
[tex]r^2 + 25\times 10^6 = 0[/tex]
[tex]r = \pm 5\times 10^3 i[/tex]
Therefore differential equation is
[tex]Q(t) = Â c_1 cos(5000t) + c_2sin(5000t)[/tex]
we know initial value if capacitor is given as [tex]0.18\times 10^{-6} C[/tex]
Therefore
[tex]0.18\times 10^{-6} = Q(0) = Â c_1 cos(0) + c_2sin(0)[/tex]
[tex]c_1 = 0.18\times 10^{-6}[/tex]
if no inital current is present then we hvae I(0) = Q'(0) = 0
[tex]Q'(T) = -5000 C_1 sin(5000t) + Â 5000 c_2cos(5000t)[/tex]
[tex]0 = Q'(0) = - 5000c_1sin(0) + 5000c_2cos(0)[/tex] therefre
[tex]c_2 =0 [/tex]
hence charge is
[tex]Q(t) = 0.18\times 10^{-6} cos(5\times 10^3 t)[/tex]