Answer:
P=1.53 i +1.92 j kg.m/s
P=2.45 Â kg.m/s
α = 51.34
Explanation:
Given that
m=123 g = 0.123 Kg
U= 25 m/s
θ=30°
t= 0.6 s
This is the case of projectile motion
So the horizontal component of velocity U =  u cosθ
u = 25 cosθ
u = 25 cos 30°
u=21.65 m/s
The vertical component of velocity U = U sinθ
Vo= U sinθ
Vo= 25 sin 30°
Vo = 12.5 m/s
We know that horizontal component of velocity of ball will remain same.So the horizontal component of momentum
Px= m u
Px= 0.143 x 12.5 kg.m/s
Px=1.53 kg.m/s
The vertical component of ball after 0.6 s
V= Vo- g t
V= 21.65 - 10 x 0.6 m/s
V= 15.65 m/s
Py= m V
Py= 0.123 x 15.65 kg.m/s
Py=1.92 kg.m/s
P=1.53 i +1.92 j kg.m/s
Magnitude P
[tex]P=\sqrt{1.53^2+1.92^2}\ kg.m/s[/tex]
P=2.45 Â kg.m/s
Direction
[tex]tan\alpha =\dfrac{P_y}{P_x}[/tex]
α = 51.34° (measured from x direction)