Answer:
The equations of both cups after t minutes is given by:
[tex]T_{Cup1}=75 °F+(180 °F-75 °F)e^{-0.2337min^{-1}*t}[/tex]
[tex]T_{Cup1}=75 °F+(162 °F-75 °F)e^{-0.2337min^{-1}*t}[/tex]
Step-by-step explanation:
The complete exercise says:
Two cups of coffee are poured from the same pot. The initial temperature of the coffee is 180°F, and is 0.2337 (for time in minutes).
Newton's law of cooling:
[tex]T=T_m+(T_0-T_m)e^{-kt}[/tex]
where,
[tex]T_m[/tex]= room temperature
[tex]T_0[/tex]= initial temperature
k=cooling constant
Hence,
Cup 1:
[tex]T_m[/tex]= 75 °F
[tex]T_0[/tex]= 180 °F
[tex]T_{Cup1}=75 °F+(180 °F-75 °F)e^{-0.2337min^{-1}*t}[/tex]
Cup 2:
[tex]T_m[/tex]= 75 °F
[tex]T_0[/tex]= 162 °F
[tex]T_{Cup1}=75 °F+(162 °F-75 °F)e^{-0.2337min^{-1}*t}[/tex]