An enzyme with a Km of 1.2x10-4 M was assayed at an initial sustrate concentration of 0.02 M. By 30 seconds, 2.7 μmoles/liter of product had been produced. How much product will be present at (a) 3 min and (b) 5.3 minutes? (c) What percent of the original substrate is used up at (c) 3 min and (d) 5.3 minutes?

Respuesta :

Answer:

Ater 3 minute

product = [tex]1.629\times 10^{-5}[/tex]Molar

susbtrate = 0.081%

after 5.3 minutes

product =[tex] 2.879\times 10^{-5} M[/tex]  

susbtrate = 0.01435

Explanation:

Given data:

[tex]Km = 1.2\times 10^{-4} M[/tex]

Sustrate concentration = 0.02 M

Amount of product [tex]2.7\mu moles/ltr[/tex]

Rate = dP/dT = product formed per time

       [tex]= \frac{2.7 \times 10^{-6} moles}{30} = 9 \times 10^{-8[/tex]

we know rate [tex]= \frac{v_{max}[S]}{Km + S}[/tex]

hence [tex]9\times 10^{-8} = \frac{v_{max}(0.02)}{(1.2\times 10^{-4} + 0.02)}[/tex]

[tex]v_{max} = 9.054\times 10^{-8}[/tex]

now after 3 min = 180 sec

product formed [tex]dP = rate \times dT = 9.054\times 10^{-8}\times 180 = 1.629\times 10^{-5}[/tex]Molar,

% substrate utilised[tex] = \frac{(1.629\times 10^{-5})}{0.02} \times 100 = 0.081[/tex]%

after 3.5 minutes = 318

[tex] dP = 9.054x10^{-8}\times 318 = 2.879\times 10^{-5} M[/tex]  

% [tex]of susbtarte\ utilised =\frac{2.879\times 10^{-5}}{0.02} \times 100 = 0.0143[/tex] %