Answer:
a) 25
b) 49
c) 97
Step-by-step explanation:
The sample size is calculated using the formula, n = [tex](\frac{\sigma\times z}{\textup{Margin of error}})^2[/tex]
Now,
for 95% confidence level value of z-factor = 1.96
Given:
Mean = $3.94
standard deviation = $0.25
thus,
a) for margin of error = $0.10
n = [tex](\frac{\sigma\times z}{\textup{Margin of error}})^2[/tex]
or
n = [tex](\frac{0.25\times1.96}{\textup{0.10}})^2[/tex]
or
n = 4.9²
or
n = 24.01 ≈ 25        (Rounded off to next integer)
b) for margin of error = $0.07
n = [tex](\frac{\sigma\times z}{\textup{Margin of error}})^2[/tex]
or
n = [tex](\frac{0.25\times1.96}{\textup{0.07}})^2[/tex]
or
n = 7²
or
n = 49
c) for margin of error = $0.05
n = [tex](\frac{\sigma\times z}{\textup{Margin of error}})^2[/tex]
or
n = [tex](\frac{0.25\times1.96}{\textup{0.05}})^2[/tex]
or
n = 9.8²
or
n = 96.04 ≈ 97        (Rounded off to next integer)