Respuesta :

Answer:

[tex]\frac{3}{y^{22}}[/tex]

Step-by-step explanation:

To simplify the expression we need to understand one rule of exponents.

That is:

[tex](ab)^x=a^xb^x[/tex]

Using this property, we can write:

[tex](3y^5)^{-2}*(2y^{-4})^{3}\\=(3)^{-2}(y^5)^{-2}*(3)^3 (y^{-4})^3\\[/tex]

Now, we use 2 other properties to simplify this further:

1. [tex]a^{-x}=\frac{1}{a^x}[/tex]

2. [tex](a^b)^c=a^{b*c}[/tex]

So, now we simplify further:

[tex](3)^{-2}(y^5)^{-2}*(3)^3 (y^{-4})^3\\=\frac{1}{3^2}y^{-10}*(27)y^{-12}\\=\frac{1}{9}y^{-10}(27)y^{-12}\\=(\frac{1}{9}*27)y^{-10}y^{-12}\\=3y^{-10-12}\\=3y^{-22}[/tex]

Or in positive exponents, that is:

[tex]3y^{-22}\\=\frac{3}{y^{22}}[/tex]