Answer:0.478 c
Explanation:
Given
mass of lighter Particle[tex](m_1)=3\times 10^{-28} kg[/tex]
mass of heavier Particle[tex](m_2)=1.51\times 10^{-27} kg[/tex]
speed of lighter particle[tex](v_1)=0.834 c[/tex]
Let speed of heavier particle[tex]=v_2[/tex]
and Momentum of the particle is given by
[tex]P=\frac{mv}{\sqrt{1-(\frac{v}{c})^2}}[/tex]
[tex]P_1=\frac{m_1v_1}{\sqrt{1-(\frac{v_1}{c})^2}}[/tex]
[tex]P_1=\frac{3\times 10^{-28}\times 0.834 c}{\sqrt{1-(\frac{0.834 c}{c})^2}}[/tex]
[tex]P_1=8.219\times 10^{-28} kg c[/tex]
[tex]P_2=\frac{m_2v_2}{\sqrt{1-(\frac{v_2}{c})^2}}[/tex]
as momentum is conserved therefore [tex]P_1=P_2[/tex]
[tex]8.219\times 10^{-28} kg c=\frac{1.51\times 10^{-27}\times v_2}{\sqrt{1-(\frac{v_2}{c})^2}}[/tex]
[tex]v_2=0.478 c[/tex]