Answer:
[tex]-0.061 < P_1 -P_2< 0.025[/tex]
Step-by-step explanation:
Give data:
[tex]n_1 = 350[/tex]
[tex]n_2 =250[/tex]
[tex]x_1 = 23[/tex]
[tex]x_2 = 21[/tex]
[tex]\hat{P} 1 = \frac{x_1}{n_1} = \frac{23}{350} = 0.066[/tex]
[tex]\hat{P} 2 = \frac{x_2}{n_2} = \frac{21}{250} = 0.084[/tex]
for 95% confidence interval
[tex]\alpha = 1 - 0.95 = 0.05 and \alpha/2 = 0.025[/tex]
[tex]z_{\alpha/2} = 1.96[/tex] from standard z- table
confidence interval for P_1 and P_2 is
[tex]\hat{P} 1 - \hat{P} 2 \pm z_{\alpja/2} \sqrt{\frac{\hat{P} 1(1-\hat{P} 1)}{n_1} +\frac{\hat{P} 2(1-\hat{P} 2)}{n_2}} [/tex]
[tex](0.066 - 0.084) \pm 1.96 \sqrt{\frac{0.066(1-0.066)}{350} +\frac{0.084(1-0.084)}{250}}[/tex]
[tex]-0.018 \pm 0.043[/tex]
confidence interval is
[tex]-0.018 - 0.043 < P_1 -P_2<-0.018+0.043[/tex]
[tex]-0.061 < P_1 -P_2< 0.025[/tex]