Respuesta :
Answer:
The smallest level was on Wednesday [tex](-\frac{13}{20})[/tex]
The greatest level was on Sunday [tex](-\frac{3}{25})[/tex]
Step-by-step explanation:
The daily water level is recorded in the following table for seven straight days at a tide station on the Big Marco River in Florida.
[tex]\begin{array}{ccccccc}\text{Sun}&\text{Mon}&\text{Tue}&\text{Wed}&\text{Thu}&\text{Fri}&\text{Sat}\\ -\dfrac{3}{25}&-\dfrac{7}{20}&-\dfrac{27}{50}&-\dfrac{13}{20}&-\dfrac{16}{25}&-\dfrac{53}{100}&-\dfrac{1}{3}\end{array}[/tex]
Rewrite all fractions with denominators 300:
[tex]-\dfrac{3}{25}=-\dfrac{3\cdot 12}{25\cdot 12}=-\dfrac{36}{300}\\ \\-\dfrac{7}{20}=-\dfrac{7\cdot 15}{20\cdot 15}=-\dfrac{105}{300}\\ \\-\dfrac{27}{50}=-\dfrac{27\cdot 6}{50\cdot 6}=-\dfrac{162}{300}\\ \\-\dfrac{13}{20}=-\dfrac{13\cdot 15}{20\cdot 15}=-\dfrac{195}{300}\\ \\-\dfrac{16}{25}=-\dfrac{16\cdot 12}{25\cdot 12}=-\dfrac{192}{300}\\ \\-\dfrac{53}{100}=-\dfrac{53\cdot 3}{100\cdot 3}=-\dfrac{159}{300}\\ \\-\dfrac{1}{3}=-\dfrac{1\cdot 100}{3\cdot 100}=-\dfrac{100}{300}[/tex]
So, the table is
[tex]\begin{array}{ccccccc}\text{Sun}&\text{Mon}&\text{Tue}&\text{Wed}&\text{Thu}&\text{Fri}&\text{Sat}\\ -\dfrac{36}{300}&-\dfrac{105}{300}&-\dfrac{162}{300}&-\dfrac{195}{300}&-\dfrac{192}{300}&-\dfrac{159}{300}&-\dfrac{100}{300}\end{array}[/tex]
The smallest level was on Wednesday [tex](-\frac{13}{20})[/tex]
The greatest level was on Sunday [tex](-\frac{3}{25})[/tex]