Answer:
(1.50, 2.00, 2.75)
Step-by-step explanation:
Given the following system of equations:
[tex]7s+4m+2l=24\\5s+3m+6l=30\\3s+7m+10l=46[/tex]
The values for s,m and l are given by solving the following matrix:
[tex]\left[\begin{array}{cccc}7&4&2&|\ 24\\5&3&6&|\ 30\\3&7&10&|\ 46\end{array}\right] \\\\\left[\begin{array}{cccc}1&\frac{4}{7} &\frac{2}{7}&|\ \frac{24}{7} \\0&1&32&|\ 90\\0 &\frac{37}{7} &\frac{64}{7}&|\ \frac{250}{7} \end{array}\right] \\\\\left[\begin{array}{cccc}1&\frac{4}{7} &\frac{2}{7}&|\ \frac{24}{7} \\0&1&32&|\ 90\\0 &0 &1&|\ \frac{11}{4} \end{array}\right] \\\\\left[\begin{array}{cccc}1&0 &0&|\ \frac{3}{2} \\0&1&0&|\ 2\\0 &0 &1&|\ \frac{11}{4} \end{array}\right] \\[/tex]
Writing in decimal form:
[tex]s= \frac{3}{2}=1.50 \\m= 2.00\\l = \frac{11}{4}=2.75[/tex]
Therefore, (s, m, l) = (1.50, 2.00, 2.75)