Find all solutions of the given system of equations (If the system is infinite many solution, express your answer in terms of x) a) 2x-3y 3 14x 6y 3 Noot 4x- 6y 10 16x- 24y 40 b)

Respuesta :

Answer:

(a) The system of the equations [tex]\left \{ {2x-3y\:=3} \atop {4x-6y\:=3}} \right.[/tex] has no solution.

(b) The system of the equations [tex]\left \{ {4x-6y\:=10} \atop {16x-24y\:=40}} \right.[/tex] has many solutions [tex]y=\frac{2x}{3}-\frac{5}{3}[/tex]

Step-by-step explanation:

(a) To find the solutions of the following system of equations [tex]\left \{ {2x-3y\:=3} \atop {4x-6y\:=3}} \right.[/tex] you must:

Multiply [tex]2x-3y=3[/tex] by 2:

[tex]\begin{bmatrix}4x-6y=6\\ 4x-6y=3\end{bmatrix}[/tex]

Subtract the equations

[tex]4x-6y=3\\-\\4x-6y=6\\------\\0=-3[/tex]

0 = -3 is false, therefore the system of the equations has no solution.

(b) To find the solutions of the system [tex]\left \{ {4x-6y\:=10} \atop {16x-24y\:=40}} \right.[/tex] you must:

Isolate x for [tex]4x-6y=10[/tex]

[tex]x=\frac{5+3y}{2}[/tex]

Substitute [tex]x=\frac{5+3y}{2}[/tex] into the second equation

[tex]16\cdot \frac{5+3y}{2}-24y=40\\8\left(3y+5\right)-24y=40\\24y+40-24y=40\\40=40[/tex]

The system has many solutions.

Isolate y for [tex]4x-6y=10[/tex]

[tex]y=\frac{2x}{3}-\frac{5}{3}[/tex]