Respuesta :
Answer:
The parabola has a horizontal tangent line at the point (2,4)
The parabola has a vertical tangent line at the point (1,5)
Step-by-step explanation:
Ir order to perform the implicit differentiation, you have to differentiate with respect to x. Then, you have to use the conditions for horizontal and vertical tangent lines.
-To obtain horizontal tangent lines, the condition is:
[tex]\frac{dy}{dx}=0[/tex] (The slope is zero)
--To obtain vertical tangent lines, the condition is:
[tex]\frac{dy}{dx}=\frac{1}{0}[/tex] (The slope is undefined, therefore the denominator is set to zero)
Derivating respect to x:
[tex]\frac{d(x^{2}-2xy+y^{2}+4x-8y+20)}{dx} = \frac{d(x^{2})}{dx}-2\frac{d(xy)}{dx}+\frac{d(y^{2})}{dx}+4\frac{dx}{dx}-8\frac{dy}{dx}+\frac{d(20)}{dx}[/tex]=[tex]2x -2(y+x\frac{dy}{dx})+2y\frac{dy}{dx}+4-8\frac{dy}{dx}= 0[/tex]
Solving for dy/dx:
[tex]\frac{dy}{dx}(-2x+2y-8)=-2x+2y-4\\\frac{dy}{dx}=\frac{2y-2x-4}{2y-2x-8}[/tex]
Applying the first conditon (slope is zero)
[tex]\frac{2y-2x-4}{2y-2x-8}=0\\2y-2x-4=0[/tex]
Solving for y (Adding 2x+4, dividing by 2)
y=x+2 (I)
Replacing (I) in the given equation:
[tex]x^{2}-2x(x+2)+(x+2)^{2}+4x-8(x+2)+20=0\\x^{2}-2x^{2}-4x+x^{2} +4x+4+4x-8x-16+20=0\\-4x+8=0\\x=2[/tex]
Replacing it in (I)
y=(2)+2
y=4
Therefore, the parabola has a horizontal tangent line at the point (2,4)
Applying the second condition (slope is undefined where denominator is zero)
2y-2x-8=0
Adding 2x+8 both sides and dividing by 2:
y=x+4(II)
Replacing (II) in the given equation:
[tex]x^{2}-2x(x+4)+(x+4)^{2}+4x-8(x+4)+20=0\\x^{2}-2x^{2}-8x+x^{2}+8x+16+4x-8x-32+20=0\\-4x+4=0\\x=1[/tex]
Replacing it in (II)
y=1+4
y=5
The parabola has vertical tangent lines at the point (1,5)
Answer:
The parabola has a horizontal tangent line at the point [tex](2,4)[/tex]
The parabola has a vertical tangent line at the point [tex](1,5)[/tex]
Step by Step Explanation:
When the equation [tex]x^{2} -2xy+y^{2}+4x-8y+20=0[/tex] is implicitly differentiated, we get
                      [tex]y'=\frac{x-y+2}{x-y+4}[/tex]
(1) Â For horizontal tangent line, [tex]y'=0[/tex]
                      [tex]\frac{x-y+2}{x-y+4}=0[/tex]
                      [tex]{x-y+2}=0[/tex]
                      [tex]y=x+2[/tex]
To find the tangent point, substitute [tex]y=x+2[/tex] into [tex]x^{2} -2xy+y^{2}+4x-8y+20=0[/tex], and solve for x
         [tex]x^{2} -2x(x+2)+(x+2)^{2}+4x-8(x+2)+20=0[/tex]
Clear brackets and solve for x, this gives
                     [tex]x=2[/tex]
Substitute [tex]x=2[/tex] into the equation [tex]y=x+2[/tex] to find y
                     [tex]y=x+2[/tex]
                     [tex]y=(2)+2=4[/tex]
The parabola has a horizontal tangent point at [tex](x, y)=(2,4)[/tex]
(1) Â For vertical tangent line, y' is undefined
  This means that the denominator of y' is zero
                      [tex]{x-y+4}=0[/tex]
                      [tex]y=x+4[/tex]
To find the tangent point, substitute [tex]y=x+4[/tex] into [tex]x^{2} -2xy+y^{2}+4x-8y+20=0[/tex], and solve for x
         [tex]x^{2} -2x(x+4)+(x+4)^{2}+4x-8(x+4)+20=0[/tex]
Clear brackets and solve for x, this gives
                     [tex]x=1[/tex]
Substitute [tex]x=1[/tex] into the equation [tex]y=x+4[/tex] to find y
                     [tex]y=x+4[/tex]
                     [tex]y=(1)+4=5[/tex]
The parabola has a vertical tangent point at [tex](x, y)=(1,5)[/tex]
For any curve,
   (1) A horizontal tangent line occurs when y' is zero.
   (2) A vertical tangent line occurs when y' is undefined
     (that is when the denominator is zero)
Learn more about horizontal and vertical tangents here
https://brainly.com/question/2141830