Answer: [tex](4.0845,\ 6.5755)[/tex]
Step-by-step explanation:
As per given , we have
n = 11
[tex]\overline{x}=5.33\\\\ s=1.33[/tex]
Since population standard deviation is missing, so we use t-test.
Critical t-value for 99% confidence :
[tex]t_{\alpha/2,\ n-1}=3.106[/tex] Â [using two-tailed t-value table]
Confidence interval :
[tex]\overline{x}\pm t_{\alpha/2}\dfrac{s}{\sqrt{n}}\\\\= 5.33\pm (3.1060)\dfrac{1.33}{\sqrt{11}}\\\\\approx5.33\pm1.2455\\\\=(5.33-1.2455,\ 5.33+1.2455)\\\\=(4.0845,\ 6.5755)[/tex]
Hence, Â 99% confidence interval for the mean amount of time that students spend in the shower each day.= [tex](4.0845,\ 6.5755)[/tex]