Perform the indicated operation and simplify the result.

[tex]\frac{b^{2}-3b-10 }{(b-2)^{2} }[/tex]·[tex]\frac{b-2}{b-5}[/tex]=
[tex]\frac{(b-5)(b+2)}{(b-2)^{2} }[/tex]·[tex]\frac{b-2}{b-5}[/tex]=
[tex]\frac{(b+2)}{(b-2) }[/tex]·[tex]\frac{1}{1}[/tex]= (semplify)
result = [tex]\frac{(b+2)}{(b-2) }[/tex]
Answer : The result is, [tex]\frac{(b+2)}{(b-2)}[/tex]
Step-by-step explanation:
The given expression is:
[tex]\frac{b^2-3b-10}{(b-2)^2}\times \frac{(b-2)}{(b-5)}[/tex]
First we have to make factors by middle term splitting method.
[tex]\frac{b^2-5b+2b-10}{(b-2)^2}\times \frac{(b-2)}{(b-5)}[/tex]
Now we are taking common.
[tex]\frac{b(b-5)+2(b-5)}{(b-2)^2}\times \frac{(b-2)}{(b-5)}[/tex]
[tex]\frac{(b-5)(b+2)}{(b-2)^2}\times \frac{(b-2)}{(b-5)}[/tex]
By cancelling the terms, we get:
[tex]\frac{(b+2)}{(b-2)}\times \frac{1}{1}[/tex]
[tex]\frac{(b+2)}{(b-2)}[/tex]
Thus, the result is, [tex]\frac{(b+2)}{(b-2)}[/tex]