Respuesta :

Answer:

{x,y,z} = {1,-1,-2}

Step-by-step explanation:

Answer:

                       −1, 2, −1)

Step-by-step explanation:

Eliminate one variable.

The coefficients of z are opposites in the first and third equations.

x + 2y + z  = 2    

+(2x − 3y − z= −7)  

  3x − y − z  = −5 Add equations 1 and 3.

Use equations 1 and 2 to create a second equation in x and y.

2(x + 2y + z = 2)→2x + 4y + 2z= 4 Multiply equation 1 by 2.

                        − (3x + y + 2z = −3)  

                           −x + 3y + 2z  = 7 Subtract.

Write the 2-by-2 system.

3x − y = −5

−x + 3y = 7

Eliminate y, and solve for x.

3(3x − y = −5) → 9x − 3y=  −15Multiply the first equation in the 2-by-2 system by 3.

+ (−x + 3y  =  7)  

8x + 3y  =  −8  Add.

x  =  −1  Divide both sides by 8.

Use one of the equations in the 2-by-2 system to solve for y.

3x − y  =  −5    

3(−1) − y  =  −5  Substitute −1 for x.

−3 − y  =  −5  Multiply.

−y  =  −2  Add 3 to both sides.

y  =  2  Divide both sides by −1.

Substitute for x and y in one of the original equations to solve for z.

x + 2y + z  =  2    

(−1) + 2(2) + z  =  2  Substitute −1 for x and 2 for y.

3 + z  =  2  Simplify.

z  =  −1  Subtract 3 from both sides.

Therefore, the solution is (−1, 2, −1).