Answer:
Part a)
[tex]v_f = 3.65 m/s[/tex]
Part b)
[tex]a = - 4 m/s^2[/tex]
Explanation:
Part a)
As we know that the elevator is stopped while spring is compressed by x = 2 m
now we will have
[tex]\frac{1}{2}kx^2 + F_f x - mgx = \frac{1}{2}mv^2[/tex]
[tex]\frac{1}{2}k(2^2) + (17000)(2) - (2000\times 9.81\times 2) = \frac{1}{2}(2000)(4^2)[/tex]
[tex]2k + 34000 - 39240 = 16000[/tex]
[tex]k = 10620 N/m[/tex]
Now we have to find the speed when spring is compressed by x = 1
So again by work energy theorem
[tex]W_g + W_f + W_{spring} = \frac{1}{2}m(v_f^2 - v_i^2)[/tex]
[tex]2000(9.81)(1) - 17000(1) - \frac{1}{2}(10620)(1^2) = \frac{1}{2}(2000)(v_f^2 - 4^2)[/tex]
[tex]-2.69 = v_f^2 - 16[/tex]
[tex]v_f = 3.65 m/s[/tex]
Part b)
Net force on the elevator while spring is compressed by x = 1
[tex]F_{net} = mg - kx - F_f[/tex]
[tex]F_{net} = 2000(9.81) - (10620\times 1) - 17000[/tex]
[tex]F_{net} = -8000 N[/tex]
now acceleration is given as
[tex]a = \frac{F}{m}[/tex]
[tex]a = -\frac{8000}{2000}[/tex]
[tex]a = - 4 m/s^2[/tex]