Answer:
P [ Z ≤ 250 ] = 0.1099
Step-by-step explanation:
We have:
Normal distribution
μ = 385 (mean of population
σ = 110 (standard deviation of population)
Z = 250 Â The our critical value
Therefore:
× [ Z ≤ 250 ] =  (Z - μ ) ÷ σ     ⇒  × [ Z ≤ 250 ] =  ( 250 - 385 )÷110
× [ Z ≤ 250 ] = - 1.2272
As the critical point has 4 decimal and Z table only give three we need interpolate hence from points 1.22 and 1.23
           × (values)        Probabilty (from z table)
             -1.22              0,1112
          × = - 1.227              Uknown
             - 1.23              0.1093
Diferences :
1.22 - 1.23 = 0.01 Â Â Â Â Â Â Â Â Â Â 0.1112 - 0.1093 Â = 0.0019
So  using rule of three:
                                   0.01    ⇒  0.0019
Diference between (1.22-1.227) =       0.007   ⇒    ? (α)
α = 0.00133
This value must be subtracted from the probability associated to the point 1.22 which is 0.1112
0.1112 - 0.00133 = 0.10987
P [ Z ≤ 250 ] = 0.10987     ⇒   P [ Z ≤ 250 ] = 0.1099