Answer:
[tex]v_y = 9.57 m/s[/tex]
Explanation:
As we know that it will follow the kinematics
[tex]y - y_o= v_y t + \frac{1}{2}at^2[/tex]
now we will have
[tex]0 - 1.5 = v_y (2.1) - \frac{1}{2}(9.8) (2.1)^2[/tex]
here we can now solve above equation for speed vy
[tex]-1.5 = 2.1 v_y -21.61[/tex]
so we have
[tex]21.6 - 1.5 = 2.1 v_y[/tex]
[tex]v_y = \frac{20.11}{2.1}[/tex]
[tex]v_y = 9.57 m/s[/tex]