Answer:
Part a)
[tex]A = 0.5 [/tex]
Part b)
[tex]\alpha = 2 t[/tex]
Part c)
[tex]t = 3.8 s[/tex]
Part d)
[tex]\theta = 18.4 rad[/tex]
Explanation:
Part a)
As we know that acceleration of the ball is given as
[tex]a = At[/tex]
here we know that
at t = 3 s we have [tex]a = 1.50 m/s^2[/tex]
so we will have
[tex]1.50 = A(3)[/tex]
so we will have
[tex]A = 0.5 [/tex]
Part b)
As we know that
[tex]a = R\alpha[/tex]
here we have
R = 25 cm
so we will have
[tex]A t = 0.25 \alpha[/tex]
[tex]\alpha = 4 A t[/tex]
Part c)
now we know that
[tex]\alpha = \frac{d\omega}{dt}[/tex]
[tex]4At = \frac{d\omega}{dt}[/tex]
[tex]\omega = \int 4At dt[/tex]
[tex]\omega = 4A (\frac{t^2}{2})[/tex]
[tex]\omega = 2A t^2[/tex]
[tex]14.5 = 2(0.5) t^2[/tex]
[tex]t = 3.8 s[/tex]
Part d)
As we know that
[tex]\omega = \frac{d\theta}{dt}[/tex]
so we will have
[tex]\theta = \int \omega dt[/tex]
[tex]\theta = \int 2A t^2 dt[/tex]
[tex]\theta = 2A (\frac{t^3}{3})[/tex]
[tex]\theta = \frac{2}{3}At^3[/tex]
[tex]\theta = \frac{2}{3}(0.5)(3.8^3)[/tex]
[tex]\theta = 18.4 rad[/tex]