Calculate the magnitude of the linear momentum for each of the following cases

a.) a proton with mass 1.67 ×10−27 kg moving with a velocity of 6 x 106 m/s. Answer in units of kg x m/s.
b.) a 1.6 g bullet moving with a speed of 374m/s to the right. Answer in units of kg x m/s.
c.) a 8 kg sprinter running with a velocity of 11.8 m/s. Answer in units of kg x m/s.
d.) Earth (m=5.98 x 1024 kg) moving with an orbital speed equal to 29700 m/s. Answer in units of kg x m/s.

Respuesta :

Answer:

(a)[tex]p = 1.002x10^{-20}Kg.m/s[/tex]

(b)[tex]p = 0.598Kg.m/s[/tex]

(c)[tex]p = 94.4Kg.m/s[/tex]

(d)[tex]p = 1.77x10^{29}Kg.m/s[/tex]

Explanation:

The linear momentum is defined as:

[tex]p = mv[/tex]  (1)

Where m is the mass and v is the velocity

a.) A proton with mass [tex]1.67 x10^{-27} kg[/tex] moving with a velocity of [tex]6 x 10^{6} m/s[/tex].

Replacing those values in equation (1) it is gotten:

[tex]p = (1.67x10^{-27}Kg)(6x10^{6}m/s)[/tex]

[tex]p = 1.002x10^{-20}Kg.m/s[/tex]

So, it has a linear momentum of [tex]1.002x10^{-20}Kg.m/s[/tex]

b.) A 1.6 g bullet moving with a speed of 374m/s to the right.

Notice that in this case it is necessary to express the mass of the bullet in terms of kilograms:

[tex]1.6g . \frac{1Kg}{1000g}[/tex] ⇒ [tex]1.6x10^{-3}Kg[/tex]

[tex]m = 1.6x10^{-3}Kg[/tex]

[tex]p = (1.6x10^{-3}Kg)(374m/s)[/tex]

[tex]p = 0.598Kg.m/s[/tex]

c.) A 8 kg sprinter running with a velocity of 11.8 m/s.

[tex]p = (8Kg)(11.8m/s)[/tex]

[tex]p = 94.4Kg.m/s[/tex]

d.) Earth ([tex]m=5.98x10^{24} kg[/tex]) moving with an orbital speed equal to 29700 m/s.

[tex]p = (5.98x10^{24}Kg)(29700m/s)[/tex]

[tex]p = 1.77x10^{29}Kg.m/s[/tex]