Answer:
(a)[tex]p = 1.002x10^{-20}Kg.m/s[/tex]
(b)[tex]p = 0.598Kg.m/s[/tex]
(c)[tex]p = 94.4Kg.m/s[/tex]
(d)[tex]p = 1.77x10^{29}Kg.m/s[/tex]
Explanation:
The linear momentum is defined as:
[tex]p = mv[/tex] Â (1)
Where m is the mass and v is the velocity
a.) A proton with mass [tex]1.67 x10^{-27} kg[/tex] moving with a velocity of [tex]6 x 10^{6} m/s[/tex].
Replacing those values in equation (1) it is gotten:
[tex]p = (1.67x10^{-27}Kg)(6x10^{6}m/s)[/tex]
[tex]p = 1.002x10^{-20}Kg.m/s[/tex]
So, it has a linear momentum of [tex]1.002x10^{-20}Kg.m/s[/tex]
b.) A 1.6 g bullet moving with a speed of 374m/s to the right.
Notice that in this case it is necessary to express the mass of the bullet in terms of kilograms:
[tex]1.6g . \frac{1Kg}{1000g}[/tex] ⇒ [tex]1.6x10^{-3}Kg[/tex]
[tex]m = 1.6x10^{-3}Kg[/tex]
[tex]p = (1.6x10^{-3}Kg)(374m/s)[/tex]
[tex]p = 0.598Kg.m/s[/tex]
c.) A 8 kg sprinter running with a velocity of 11.8 m/s.
[tex]p = (8Kg)(11.8m/s)[/tex]
[tex]p = 94.4Kg.m/s[/tex]
d.) Earth ([tex]m=5.98x10^{24} kg[/tex]) moving with an orbital speed equal to 29700 m/s.
[tex]p = (5.98x10^{24}Kg)(29700m/s)[/tex]
[tex]p = 1.77x10^{29}Kg.m/s[/tex]