Answer:
[tex]1.5 \Omega[/tex]
Explanation:
The resistance of a wire is given by  the equation
[tex]R=\frac{\rho L}{A}[/tex]
where :
[tex]\rho[/tex] is the resistivity of the material
L is the length of the wire
A is the cross-sectional area  of the wire
Here we have  the following data:
[tex]\rho = 3.3\cdot 10^{7} m[/tex] Â is the resistivity
L = 7.0 m  is the length of the wire
[tex]d=0.14 cm[/tex] is the diameter of the wire, so the radius is
[tex]r=\frac{d}{2}=\frac{0.14}{2}=0.07 cm = 7\cdot 10^{-4}m[/tex]
So the cross-sectional area is
[tex]A=\pi r^2 = \pi (7\cdot 10^{-4})^2=1.54\cdot 10^{-6} m^2[/tex]
Substituting, the resistance of the wire is:
[tex]R=\frac{(3.3\cdot 10^{-7})(7.0)}{(1.54\cdot 10^{-6})}=1.5 \Omega[/tex]