Answer:
[tex]1.5 \Omega[/tex]
Explanation:
The resistance of a wire is given by:
[tex]R=\frac{\rho L}{A}[/tex]
where
[tex]\rho[/tex] is the resistivity of the material
L is the length of the wire
A is the cross-sectional area of the wire
For the wire in this problem:
[tex]\rho = 3.3\cdot 10^{-7} \Omega m[/tex]
L = 7.0 m
r = d/2 = 0.07 cm = 0.0007 m, so the area is
[tex]A=\pi r^2=\pi(0.0007)^2=1.54\cdot 10^{-6}m^2[/tex]
Solving for R,
[tex]R=\frac{(3.3\cdot 10^{-7})(7.0)}{1.54\cdot 10^{-6}}=1.5 \Omega[/tex]